Personalized Information
Retrieval



Traditional Information Retrieval

e Content-based approaches
— Statistical and natural language techniques

— Results that contain a specific set of words or meaning, but
cannot differentiate which documents in a collection are
the ones really worth reading.

e Citation and hyperlink approaches

— An implicit measure of importance.

— Create an authoring bias where the meaning and
resources valued by a group of authors determine the
results for the entire user population.

e Consensus relevancy, not individual relevancy.



Apply Usage Data into IR

e Usage-based IR methods
— Actions of users to compute relevancy.

— The retrieval process can be infused with different
“granularities” of usage data—individual,
group/social, and census.

e More individual usage data - more personalized

* More social usage data = collaborative filtering 2>
recommendation.



Directions to Personalized Search

* Query augmentation
— Old topics

e Reinforce the query or suggest results from prior searches
e Query history and query expansion
— New topics

e Diverse the search results

 Filip Radlinski, Susan Dumais, “Improving Personalized Web
Search using Result Diversification”, SIGIR 2006

e Result processing
— Filtering
— Re-ranking



Old Methods for Collecting Users’
Preference

* Force users to input their profile.
e Relevance feedback. (good result, bad result)

e However, all users are lazy.



Modify PageRank for
Personalized Search



PageRank

* when a page p, links to a page p, it is probably because
the author of page p, thinks that page p is important.

e this link (p, -> p) adds to the importance score of page
p.

e How much score should be added for each link?

— Intuitively, if a page itself is very important, then its
author’s opinion on the importance of other pages is more
reliable; and if a page links to many pages, the importance
score it confers to each of them is decreased.

PR(p)= ) PR(po)/lp

po&Ayp

PR(p)=d* Y PR(po)/lp, + (1 —d) * E(p)

o EAP



Topic Sensitive PageRank

TSPR.(p) =dx+ »  TSPR.(po)/lp, + (1 — d) * E:(p).

pDEAp

E.(p) = 1/n, if page p is related to topic ¢
ST otherwise,



User’s Preference

V(p) = > T(i) «TSPR:(p)
=1
Prior research™® show that when a user’s clicks are affected by
search results ranked by PR(p), the user’s visit probability to
page p, V (p), is proportional to PR(p)°/*, as opposed to PR(p)
as predicted by the random surfer model.

T

Vip) => T() * [TSPR:(p)]"*

=1

[*] J. Cho and S. Roy. Impact of Web search engines on page popularity. In Proc. of WWW ’04,
2004.



Ranking Search Results Using Topic
Preference Vectors

ST Pr(T(3)|q) - TSPR:(p)

PrT()lg = L@l

Pr(q)
_ Pr(T()) « Prig[T(i))

Pr{q)
o< Pr{T(i)) = Pr{g/T()

PPRr(p) = » T(i) Pr(q|T(8)) - TSPR:(p)

t=1



Query Log & HITS-like Alogrithm



HITS

e Hyperlink-Induced Topic Search (by J.
Kleinberg, 1998)

— Detection of high-score hub and authority web

pages.
e Good authority pages

— In the context of particular query topics
— Less out-links, more in-links (especially links from good hub
pages)
e Good hub pages

— Pages have more links to good authority pages.



HITS-like iterative algorithm

* Consider unseen pages as authority pages,
and representative terms as hub pages.

The Directed Graph
Approaches
Nodes Edges
HITS Authority Pages Hub Pages Hyperlinks
Our Unseen Search Representative Occurrence?
Approach Results Terms

Table 1. Our approach versus HITS.



HITS-like iterative algorithm

e Construct a directed graph (of representative
terms and unseen pages)

-G =(V, E)
— V: unseen paggs & T
representative terms L~y
2| 11,11, 15, 16
— E: p—2q, is weighted by - :
the freq. of occ. of a 2,13 67,8 N 5
representative term p Y g

In an unseen page q. Figure 1. A sample directed graph.



HITS-like iterative algorithm

e HITS-like iterative algo.
— Initialization
e Equal authoritative for unseen pages.

o 0o D—lfF
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e Term score: tf in the history query logs
/|1X]
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xj:lfj;’ ;lf;
e Associate the weight to each edge.
w(tf_).rj):.tflf,j

tf,; is the term freq. of term i occurring in page j.



HITS-like iterative algorithm

e HITS-like iterative algo.

— Recompute the hub score

p L+ Z yk w(ts' — .Vj)
x i - ;
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— Recompute the authority score
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— After recomputing, normalization
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HITS-like iterative algorithm

e HITS-like iterative algo.
— When to stop?

 The changes of hub scores and the authority scores are
smaller than predefined threshold

L R T - R AP N
. z:l(yj _yj)er;(xf ' _xz')2

e Or the # of iterations is larger than a predefined times



HITS-like iterative algorithm

HITS-like iterative algo.

— Select result pages and select terms for query
expansion.

e Top n(predefined) unseen search results with highest
authority scores are selected for recommendation

 Top m representative terms with highest hub scores are
selected to expand the original query.

— m is determined according to the position of the biggest gap,
that is, if t,—t;,,is bigger than the gap of any other two
neighboring ones of the top half representative terms, then m
is given a value i.



CubeSVD



Related Work

 Higher-Order Singular Value Decomposition
(HOSVD)

— L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A
multilinear singular value decomposition. SIAM

Journal on Matrix Analysis and Applications,
21(4):1253-1278, 2000.
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* By setting the smallest (min{l,, I,} - k) singular
values in S to zero, the matrix F is approximated
with a rank-k matrix and this approximation is
best measured in reconstruction error.



HOSVD

A tensor is a higher order generalization of a vector
— 1t order tensor is a vector
— 2" order tensor is a matrix

<% xly .
The order of a tensor A€ RN js N
Elements of A are denotedas a,,..,,.., Wwhere1<i <I

The mode-n vectors of an N-th order tensor A are the

| -dimensional vectors obtained from A by varying the
index in and keeping the other indices fixed, that is the
column vecto s of n mode matrix unfolding

A( c R'"> hnalna-In) of tensor A




HOSVD

The n-mode product of a tensor A € Rt 2XXIN [y g
matrix M € R/ jsan {1 x [o X - X I, 1 X J,, X Ini1 X
.- - X I ny-tensor of which the entries are given by

(A Xn M)il"'in_ljn’?:n—l—l""ij\r — Za’il"'in—linin—|—1"'iijn’in
in
* M inAinsine1=MA 1 xine1



HOSVD

Note that the n-mode product of a tensor and a matrix is
a generalization of the product of two matrices. 1t can be
expressed in terms of matrix unfolding:

By = MA@ (3)

where B, is the n-mode unfolding of tensor B = A x,, M.
In terms of n-mode products, the matrix SVD can be
rewritten as F' = 5 X4 v X o 17458 By extension, HOSVD
is a generalization of matrix SVD: every /1 X [o X --- X In
tensor A can be written as the n-mode product [15]:

A=8x1 Vi Xo Voo Xy VN (4)



HOSVD

e Sijscalled core tensor.

* Instead of being pseudodiagonal (nonzero
elements only occur when the indices satisfy i,

=i2=---=iN),
* S has the property of all-orthogonality.

— two subtensors S, = a and S, =6 are orthogonal for
all possible values of n, o and 8 subject to o # 6.



CubeSVD

e (user, query, web page) = Rmxnxk

o'y
T

S




1. Construct tensor A from the clickthrough data. Sup-
pose the numbers of user, query and Web page are m, n,
k respectively, then A € R™*™* Each tensor element
measures the preference of a {user, query) pair on a Web
page.

2. Calculate the matrix unfolding A., A, and A, from
tensor A. A, is calculated by varying user index of ten-
sor A while keeping query and page index fixed. A, and
A, are computed in a similar way. Thus A,, A,, A, is
a matrix of m x nk, n x mk, k x mn respectively.

3. Compute SVD on A,, A, and A,, set V,,, V,; and V,
to be the left matrix of the SVD respectively.

4. Select mp € [1,m], ng € |1,n] and ko € [1,k]. Remove
the right-most m — mp, n — ng and k& — kg columns from
V., V, and V, , then denote the reduced left matrix by
W., W, and W, respectively. Calculate the core tensor
as follows:

S=Ax1 Wi %o W xs W) (5)
b. Reconstruct the original tensor by:

AZSXIVuXEVQKB% (6)



