Resources of Transfer Learning

- Course
 - UC Berkeleyhttp://www.cs.berkeley.edu/~russell/classes/cs294/f05/
 - UT Austin http://www.cs.utexas.edu/~lilyanam/TL/
- Workshop
 - Inductive Transfer: 10 Years Later NIPS 2005
 Workshop
 http://iitrl.acadiau.ca/itws05/index.htm

A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data

Rie Kubota Ando Tong Zhang IBM T.J. Watson Research Center Presented by Jiazhong Nie Feb.5 2009

Supervised learning

- Learn a predictor f:X->Y
- With some loss function L, the measure of a predicator is

$$R(f) = \mathbf{E}_{\mathbf{X},Y} L(f(\mathbf{X}), Y)$$

- Don't know the distribution (x,y)
 - empirical risk : use the sum of loss on training set $\{(\mathbf{X}_i, Y_i)\}$ generated independently instead of the expectation.

Supervised learning

 Learning: empirical risk minimization(ERM) in some hypothesis space H.

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^{n} L(f(\mathbf{X}_i), Y_i).$$

- Hypothesis space is essential to the learning
- For multiple problems on the same the domain
 - Share information (parameter θ) among their hypothesis spaces.

Hypothesis spaces sharing

• For m learning problems indexed by $\ell \in \{1, ..., m\}$ the ERM is performed on each hypothesis space $\mathcal{H}_{\ell,\theta}$

$$\hat{f}_{\ell,\theta} = \arg\min_{f \in \mathcal{H}_{\ell,\theta}} \sum_{i=1}^{n_{\ell}} L(f(\mathbf{X}_i^{\ell}), Y_i^{\ell})$$

$$\hat{\theta} = \arg\min_{\theta \in \Gamma} \left[r(\theta) + \sum_{l=1}^{m} O_l(X^l, Y^l, \theta) \right]$$

$$O_l(X,Y,\theta) = \min_{f \in H_{l,\theta}} (\sum_{i=1}^n L(f(X_i),Y_i))$$

Example with the linear predictor

Linear predictor with known feature map Φ

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{\Phi}(\mathbf{x})$$

 Introduce information shared by another feature mapping:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + \mathbf{v}^T \mathbf{\Psi}_{\theta}(\mathbf{x})$$

• A simple linear form of $\Psi_{\theta}(\mathbf{x}) = \Theta \Psi(\mathbf{x})$, where Ψ is known

$$f_{\Theta}(\mathbf{w}, \mathbf{v}; \mathbf{x}) = \mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + \mathbf{v}^T \Theta \mathbf{\Psi}(\mathbf{x})$$

linear predictor

Hypothesis space

$$\mathcal{H}_{\Theta} = \left\{ \mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + \mathbf{v}^T \Theta \mathbf{\Psi}(\mathbf{x}) : \|\mathbf{w}\|_2 \le \frac{A}{\sup_{\mathbf{x}} \|\mathbf{\Phi}(\mathbf{x})\|_2}, \|\mathbf{v}\|_2 \le \frac{B}{\sup_{\mathbf{x}} \|\mathbf{\Psi}(\mathbf{x})\|_2} \right\}$$
$$\Gamma = \left\{ \Theta \in R^{h \times p} : \Theta \Theta^T = I_{h \times h} \right\},$$

- Estimation
 - -g(w,v) is some regularization condition of w,v.

$$[\{\hat{\mathbf{w}}_{\ell}, \hat{\mathbf{v}}_{\ell}\}, \hat{\Theta}] = \underset{\{\mathbf{w}_{\ell}, \mathbf{v}_{\ell}\}, \Theta}{\operatorname{arg\,min}} \left[r(\Theta) + \sum_{\ell=1}^{m} \left(g(\mathbf{w}_{\ell}, \mathbf{v}_{\ell}) + \frac{1}{n_{\ell}} \sum_{i=1}^{n_{\ell}} L(f_{\Theta}(\mathbf{w}_{\ell}, \mathbf{v}_{\ell}; \mathbf{X}_{i}^{\ell}), Y_{i}^{\ell}) \right) \right]$$

Optimization

Objective function:

$$[\{\hat{\mathbf{w}}_{\ell}, \hat{\mathbf{v}}_{\ell}\}, \hat{\Theta}] = \underset{\{\mathbf{w}_{\ell}, \mathbf{v}_{\ell}\}, \Theta}{\operatorname{arg\,min}} \sum_{\ell=1}^{m} \left(\frac{1}{n_{\ell}} \sum_{i=1}^{n_{\ell}} L((\mathbf{w}_{\ell} + \Theta^{T} \mathbf{v}_{\ell})^{T} \mathbf{X}_{i}^{\ell}, Y_{i}^{\ell}) + \lambda_{\ell} ||\mathbf{w}_{\ell}||_{2}^{2} \right)$$
s.t. $\Theta\Theta^{T} = I_{h \times h}$,

• Introduce $\mathbf{u}_{\ell} = \mathbf{w}_{\ell} + \Theta^T \mathbf{v}_{\ell}$

$$[\{\hat{\mathbf{u}}_{\ell}, \hat{\mathbf{v}}_{\ell}\}, \hat{\Theta}] = \underset{\{\mathbf{u}_{\ell}, \mathbf{v}_{\ell}\}, \Theta}{\operatorname{arg\,min}} \sum_{\ell=1}^{m} \left(\frac{1}{n_{\ell}} \sum_{i=1}^{n_{\ell}} L(\mathbf{u}_{\ell}^{T} \mathbf{X}_{i}^{\ell}, Y_{i}^{\ell}) + \lambda_{\ell} \|\mathbf{u}_{\ell} - \Theta^{T} \mathbf{v}_{\ell}\|_{2}^{2} \right)$$
s.t. $\Theta\Theta^{T} = I_{h \times h}$.

Optimization

- 1. Fix θ and v, optimize with respect to u
 - A convex optimization problem with a convex choice of L
- 2.Fix u, optimize with respect to v and θ ,

$$[\{\hat{\mathbf{v}}_{\ell}\}, \hat{\Theta}] = \arg\min_{\{\mathbf{v}_{\ell}\}, \Theta} \sum_{\ell} \lambda_{\ell} ||\hat{\mathbf{u}}_{\ell} - \Theta^{T} \mathbf{v}_{\ell}||_{2}^{2}, \quad \text{s.t.} \quad \Theta\Theta^{T} = I_{h \times h}.$$

With some algebra, we know:

$$\min_{\mathbf{v}_{\ell}} \|\hat{\mathbf{u}}_{\ell} - \Theta^T \mathbf{v}_{\ell}\|_2^2 = \|\hat{\mathbf{u}}_{\ell}\|_2^2 - \|\Theta\hat{\mathbf{u}}_{\ell}\|_2^2.$$

Optimization

• Respect to θ

$$\hat{\Theta} = \arg\max_{\Theta} \sum_{\ell=1}^{m} \lambda_{\ell} ||\Theta \hat{\mathbf{u}}_{\ell}||_{2}^{2}, \quad \text{s.t.} \quad \Theta \Theta^{T} = I_{h \times h}.$$
 Let $\mathbf{U} = [\sqrt{\lambda_{1}} \hat{\mathbf{u}}_{1}, \dots, \sqrt{\lambda_{m}} \hat{\mathbf{u}}_{m}]$ be an $p \times m$ matrix, we have

$$\hat{\Theta} = \arg \max_{\Theta} \operatorname{tr}(\Theta \mathbf{U} \mathbf{U}^T \Theta^T), \quad \text{s.t.} \quad \Theta \Theta^T = I_{h \times h},$$

- The solution is
 - SVD decomposition of U $\mathbf{U} = V_1 D V_2^T$
 - $\hat{\Theta}$ is the first h rows of V_1^T

An extension

- Some dimensions of X are more related to each other
 - Group dimensions
 - Perform SVD locally on each group
- With feature $[\mathbf{X}_{i,t}^{\ell}]_{t=1,...,G}$

$$[\{\hat{\mathbf{w}}_{\ell,t}, \hat{\mathbf{v}}_{\ell,t}\}, \{\hat{\Theta}_{t}\}] = \underset{\{\mathbf{w}_{\ell,t}, \mathbf{v}_{\ell,t}\}, \{\Theta_{t}\}}{\operatorname{arg\,min}} \sum_{\ell=1}^{m} \left(\frac{1}{n_{\ell}} \sum_{i=1}^{n_{\ell}} L(\sum_{t=1}^{G} (\mathbf{w}_{\ell,t} + \Theta_{t}^{T} \mathbf{v}_{\ell,t})^{T} \mathbf{X}_{i,t}^{\ell}, Y_{i}^{\ell}) + \sum_{t=1}^{G} \lambda_{\ell,t} \|\mathbf{w}_{\ell,t}\|_{2}^{2} \right),$$
s.t. $\forall t \in \{1, \dots, G\} : \Theta_{t} \Theta_{t}^{T} = I_{h_{t} \times h_{t}}.$ (10)

Semi-supervised Learning

- Systematically create multiple prediction problems(auxiliary problem) from unlabeled data
- Learn a good structural parameter θ by ERM on auxiliary problems
- Learn a predicator by ERM using θ on the original problem

Auxiliary problem creation

- With the characteristic:
 - Automatic labeling
 - Relevancy
- Ex: Word tagging task
 - Predict the word strings
- Ex: Text Classification
 - Predict frequent words: divide the word in a document into two groups, predict the most frequent words in one group based on the other group

Auxiliary problem creation

- Predict the behavior of the target classifier
- 1. Train a classifier T_1 with labeled data Z for the target task, using feature map Φ_1 .
- 2. Generate labeled data for auxiliary problems by applying T_1 to unlabeled data.
- 3. Learn structural parameter θ by performing joint ERM on the auxiliary problems, using only the feature map Φ_2 .
- 4. Train a final classifier with labeled data Z, using θ computed above and some appropriate feature map Ψ .

Behavior:

- Predict the prediction of classifier T
- Predict the top-k choices of classifier T

Text Classification Experiment

- Corpus:
 - 20-newsgroup
- Feature:
 - Normalized word frequency vector
- Auxiliary problem:
 - Predicate the most frequent word based on one half of the words
 - Predicate top-K answers of the supervised classifier

Experiment result

Significant improvements (22%) over the supervised method