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Overview

m SVD in Latent Semantic Indexing
m Non-negative Matrix Factorization
m Probabilistic Latent Semantic Indexing
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Vector Space Model

m A document: a vector in term space
m Vector computation: TF / TFIDF

m Similarity measure: angular cosine between
guery and documents.

m Document vectors make up a term-document
madtrix.
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Example

m 9 documents
m Terms in bold are in the dictionary.

cl: Human machine interface for Lab ABC computer applications
c2: A swrvey of user opinion of computer svstem response fime

cid: The EPS user interface management system

cd: Svstem and hruman svstem engineering testing of EPS

c5: Relation of user-perceived response time to error measurement

ml: The generation of random, binary, unordered frees
m2: The intersection graph of paths in frees

m3: Graph minors IV: Widths of trees and well-quasi-ordering
m&: Graph minors: A survey
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Term-Document Matrix (TF)

human | 0 0 1 0 0 0 0 ()
interface ] 0 | () () () () () ()
computer 1 1 0 () () {} ( () (
user ( 1 | 0 | () 0 () ()
sVstem ( 1 1 2 () (} ( () (
response ) 1 0 0 l 0 0 0 0
time () 1 0 0 | () 0 () ()
EPS ( 0 | | 0] () 0 () ()
survey ( I () () () (} () () ]
trees (1 0 0 0 0 | | | ()
araph ( 0 0 0 0 () I I ]
Minors ( () 0 0 () (} ( | ]



Weakness of VSM

m Noise In term-document matrix
Synonyms
m E.g. “car” & “automobile”.
m Decrease recall

Polysems
m E.g. “saturn”.
m Decrease precision
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Latent Semantic Indexing (LSI)

m A .. term-document matrix
m Singular Value Decomposition (SVD)

A=UWV'

m Latent Semantic Indexing (LSI)

A =UWV,'
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What's really happening?

m Transformation of space
Original: Term space
m Basis B, ={e,, e,, ..., e}, mis the term number in dictionary.

New: Latent semantic space

m Basis B, = {u,, U, ..., U}, k is the truncated dimension of
document vector.
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Thinking with LS|

m LS| aims to find
Meaning behind words
Topics in documents

m Difference between topics and words

Words — observable
Topics — latent

m Topic space
m Latent semantic space
m Each basis vector u; represents a topic
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Evaluation of LSI

m Strength

Filter out noise(synonyms, polysems): dimension
reduction considers only essential components of
term-document matrix.

Reduces storage
m \Weakness
Interpretation impossible: mixed signs

Orthogonal restriction on basis vector
Good truncation point k is hard to determine.



»
Non-negative Matrix
Factorization

m Unlike SVD, we do matrix factorization as
A =WH, , W H >0
m Topic space
Dimension: k
Basis b; = {wy, w,, ..., W}



Properties of NMF

m No orthogonal restriction on basis vector

m Easy interpretation
Elements of W and H are all non-negative.

Wj; reflects how much basis vector w; is
related to term t,

H; reflects how much document d; points to
the direction of basis vector w..
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Computation of NMF
[W, H] = min|A-WH|,s.t W,H>0

m Algorithms
m Lee and Seung 2000
m Berry etc. 2004



Evaluation of NMF

m Strength
m Great interpretability

m Improved Performance for document clustering
comparing to LSI.

m \Weakness
Factorization is not unique
Local minimum problem



pLSI: a probabillistic view of LS|

Why Latent Concepts?

Documents Terms Sparseness problem: terms not
: : occurring in a document get zero
P(z|d;0)  P(wlz; ) 9 J
probability

Concept expression

probabilities are estimated
imports based on all documents that

are dealing with a concept

No prior knowledge about
concepts required

Dimension reduction



"
PLSA: Graphical model representation
P(d.w)=P(d)P(w|d)= P(d)Z P(w|z)P(z|d)
= ZP(d)P(w 2)P(z|d) @

—ZP(d 2)P(w|z)
—ZP( )P(w|z)P(d |z) ®

b
(@) (b) n
20=0:=ClINO=0=0

Asymmetric decomposition Symmetric decomposition
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PLSA via Likellhood Maximization
m Log-Likelihood
L(D,W):H (Z P(w| Z)p(zld))n(dw)

| = Zn(d,w) Iog(z P(w|z)P(z|d))

d,w

m Goal : maximize the log-likelihood with the
constraints

> p(wiz)=1, Y p(z|d;) =1
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KL Projection

KL divergence is a measure of difference
between the empirical data distribution and
the model

| = Zn(d,w) Iog(z P(w|z)P(z|d))

d,w

=50 "% log P ) +1og @)

n

Recall KL divergence is pi(PlQ) = 3 P(i)log Pl)
n(d.w) | g e

n(d)

P=P(w|d)= 0 =P(w|d)

Rewrite the underlined part: —Plﬂ%
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PLSA via EM

« E-step: estimate posterior probabilities of latent

variables, (“concepts”)

P(z1d.w) = P(d |z)P(w |z)P(z) Probability that the occurence of
- i S P(d|z')P(w|z)P(z") term w in document d can be
: “explained” by concept Z

* M-step: parameter estimation based on expected statistics.

Pl w | |z) > Z n{d _ w)P(z|d.w)

il

o

how often is term W associated with concept Z

Pl d|z)x Z n({d.w)Pi{z |d.w)

-

o

how often is document d associated with concept Z

P{ z) = Z n(d . w)P(z|d,w)
4

-
-

—

probability of concept Z
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10 most probable word s in the

respective latent classes (or factnrsj

examples

“segment 17

“gegment 47

“matrix 17

“matrix 27

“lhine 17

“line 2"

" I.H-.:_“-t'-\.r I "

power 27
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Performance comparison of a retrieval system:

Three models, four document collection.

MED C'RAN CACM 151
prec.  nnpr. | pree. nnpr. | pree. lnpr. | pree. L.
cos4tl 11.3 2494 17.9 12.7
[.5] LT +16.7 | T2RT 1.0 ] “16.0 L1.6 128 +i).8
PLSI 63.9 +44.2 1 351 4174 229 4279 I8 44810
o0 70 &0 s0
=0 a5 1
g0 a0 cisi
40 - -
70
50 s | i
50 40 :
L
= .
= &0 B i
:% =0 =5 L ll-'. a
& I
=48 =0 T
=0 | -1'- i
=0 =0 n
=0 15 [ 3 i
._-|_ .\"
=T | 1o | ™ .
- 10 -
: 10 o
1wl |- cos - =L cos T
-- LS| - LS| -
— PLSIY — PLSI
o ] o o L o ]
o =0 100 o s0 100 o s0 100 o =0 100
recall [%] recall [%%] recall [%%] recall [%%]



PLSA Mixture Decomposition vs.

LSA/SVD

prsa(d,w) = ) p(d|z) p{z) p(wlz)

X

= - I I. ) I
- e
pt

probabilities pLSA term
— probabilities
lpLSA document
mmm ' probabilities
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PLSA vs. LSA

m Objective function: Frobenius norm vs. likelihood
= Non-negative
m Normalized

m There Is no obvious interpretation of the
directions in the LSA latent space; Multinomial
word distribution in PLSA

m PLSA utilized statistical theory to determine the
number of latent space dimension. LSA based
on ad hoc heuristics
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Relation between PLSA and NMP

m Any (local) maximum likelihood solution of PLSA
IS a solution of NMF with KL divergence

m KL divergence is a measure of the difference
petween the empirical distribution and the model

m Implications

m Any problem which can be formulated with
NMF, may be efficiently solved by PLSA




SVD In Collaborative Filtering

m Filling in missing values
m Filling matrix using average value
m EM algorithms

>~
. <
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Weighted -SVD

e Constant non-negative matrix W & R”ﬁm.

e Weights the importance of each entry of the data matrix R

W R
Ol11111]11160 1111012
T 1111111111 p 0111310
11110111111 0 01\ 1
ol11111111]1 O11101]9
e Useful for masking missing entries of the matrix.

e Allows factorization to focus on certain pieces of the matrix.
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NMF In Collaborative Filtering

= Objective: Err(P,Q)= > (r; - plq;)’

(u,ex

m Only deal with known values in R

m Can deal with large dataset
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