Matrix Factorization & Latent Semantic Analysis Review

Yize Li, Lanbo Zhang

Overview

- SVD in Latent Semantic Indexing
- Non-negative Matrix Factorization
- Probabilistic Latent Semantic Indexing

Vector Space Model

- A document: a vector in term space
- Vector computation: TF / TFIDF
- Similarity measure: angular cosine between query and documents.

$$\cos \theta_i = \frac{q^* d_i}{|q|^* |d_i|}$$

 Document vectors make up a term-document matrix.

Example

9 documents

Terms in bold are in the dictionary.

- c1: Human machine interface for Lab ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user-perceived response time to error measurement
- m1: The generation of random, binary, unordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

Term-Document Matrix (TF)

human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Weakness of VSM

Noise in term-document matrix

□ Synonyms

- E.g. "car" & "automobile".
- Decrease recall
- Polysems
 - E.g. "saturn".
 - Decrease precision

Latent Semantic Indexing (LSI)

- A_{m*n}: term-document matrix
- Singular Value Decomposition (SVD)

 $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathrm{T}}$

Latent Semantic Indexing (LSI)

$$\mathbf{A}_{k} = \mathbf{U}_{k} \mathbf{W}_{k} \mathbf{V}_{k}^{\mathrm{T}}$$

What's really happening?

Transformation of space

Original: Term space

Basis $B_1 = \{e_1, e_2, ..., e_m\}$, m is the term number in dictionary.

New: Latent semantic space

Basis B₂ = {u₁, u₂, ..., u_k}, k is the truncated dimension of document vector.

Thinking with LSI

- LSI aims to find
 - □ Meaning behind words
 - □ Topics in documents

Difference between topics and words

- □ Words observable
- □ Topics latent
- Topic space
- Latent semantic space
- Each basis vector u_i represents a topic

Evaluation of LSI

Strength

- Filter out noise(synonyms, polysems): dimension reduction considers only essential components of term-document matrix.
- Reduces storage
- Weakness
 - □ Interpretation impossible: mixed signs
 - Orthogonal restriction on basis vector
 - □ Good truncation point k is hard to determine.

Non-negative Matrix Factorization

Unlike SVD, we do matrix factorization as

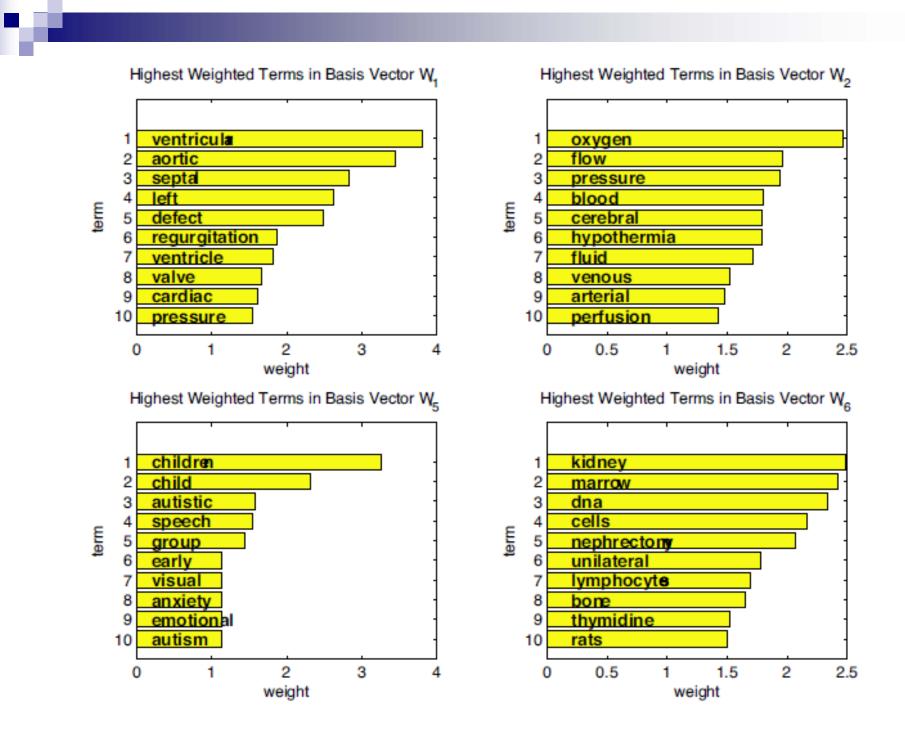
A_k = W_kH_k, W_k, H_k ≥ 0

Topic space

Dimension: k
Basis b₃ = {W₁, W₂, ..., W_k}

Properties of NMF

- No orthogonal restriction on basis vector
- Easy interpretation
 - □ Elements of W and H are all non-negative.
 - $\square W_{ij}$ reflects how much basis vector w_j is related to term t_i
 - \Box H_{ij} reflects how much document d_j points to the direction of basis vector w_i.



Computation of NMF

 $[\mathbf{W},\mathbf{H}] = \min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_{F}^{2}, \text{ s.t. } \mathbf{W}, \mathbf{H} \ge \mathbf{0}$

Algorithms

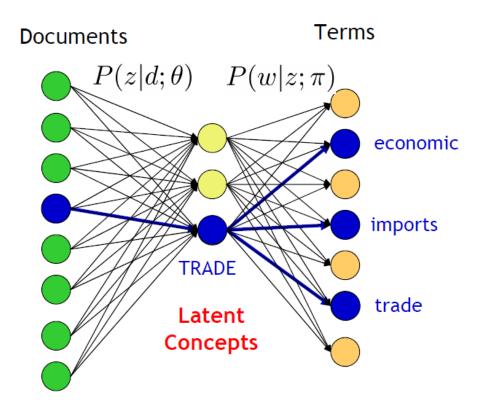
- Lee and Seung 2000
- Berry etc. 2004

Evaluation of NMF

Strength

- Great interpretability
- Improved Performance for document clustering comparing to LSI.
- Weakness
 - Factorization is not unique
 - □ Local minimum problem

pLSI: a probabilistic view of LSI



Why Latent Concepts?

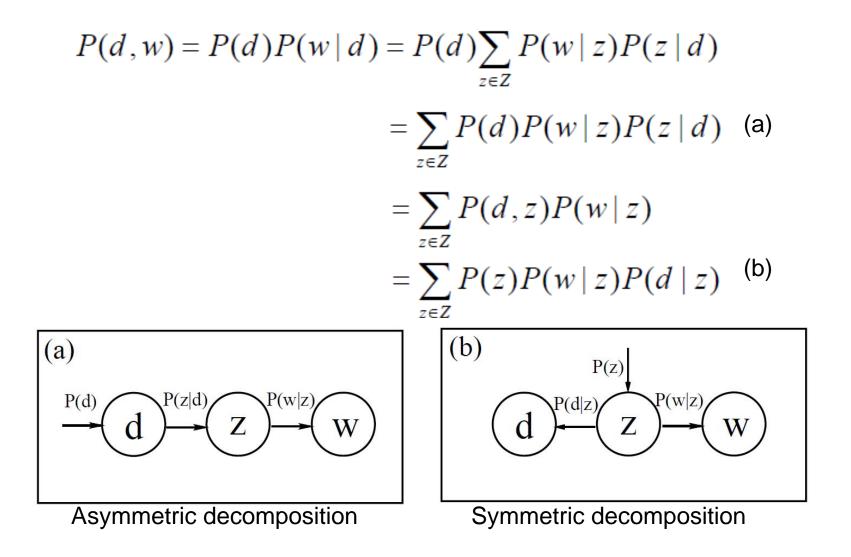
Sparseness problem: terms not occurring in a document get zero probability

Concept expression probabilities are estimated based on all documents that are dealing with a concept

No prior knowledge about concepts required

Dimension reduction

PLSA: Graphical model representation



pLSA via Likelihood Maximization

• Log-Likelihood $L(D,W) = \prod_{d,w} \left(\sum_{z} P(w \mid z) P(z \mid d) \right)^{n(d,w)}$ $l = \sum_{d,w} n(d,w) \log(\sum_{z} P(w \mid z) P(z \mid d))$

Goal : maximize the log-likelihood with the constraints

$$\sum_{w} p(w/z_{l}) = 1, \sum_{z} p(z/d_{j}) = 1$$

KL Projection

KL divergence is a measure of difference between the empirical data distribution and the model

$$l = \sum_{d,w} n(d, w) \log(\sum_{z} P(w \mid z) P(z \mid d))$$
$$= \sum_{d} n(d) [\sum_{w} \frac{n(d, w)}{n(d)} \log P(w \mid d) + \log P(d)]$$
Recall KL divergence is $D_{\text{KL}}(P \parallel Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$

$$P = \hat{P}(w \mid d) = \frac{n(d, w)}{n(d)} \qquad Q = P(w \mid d)$$

Rewrite the underlined part: $-P \log \frac{1}{Q}$

PLSA via EM

 E-step: estimate posterior probabilities of latent variables, ("concepts")

 $P(z \mid d, w) = \frac{P(d \mid z)P(w \mid z)P(z)}{\sum_{i} P(d \mid z')P(w \mid z')P(z')}$ Probability that the occurrence of term w in document d can be

"explained" by concept Z

M-step: parameter estimation based on expected statistics.

 $\mathbb{P}(w \mid z) \propto \sum_{d} n(d, w) \mathbb{P}(z \mid d, w)$

how often is term W associated with concept Z

 $P(d \mid z) \propto \sum_{w \in A} \frac{n(d, w)P(z \mid d, w)}{p(z \mid d, w)}$

how often is document d associated with concept Z

$$\mathbb{P}(z) \propto \sum_{d,w} n(d,w) \mathbb{P}(z \mid d,w)$$

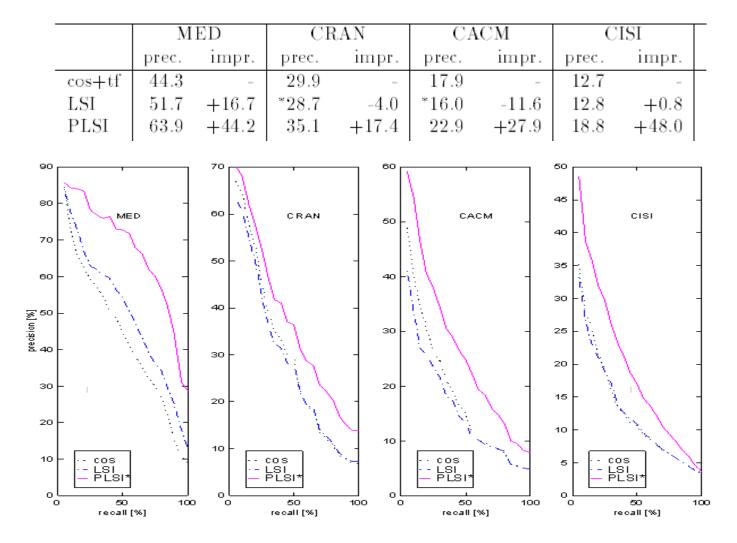
probability of concept Z

examples

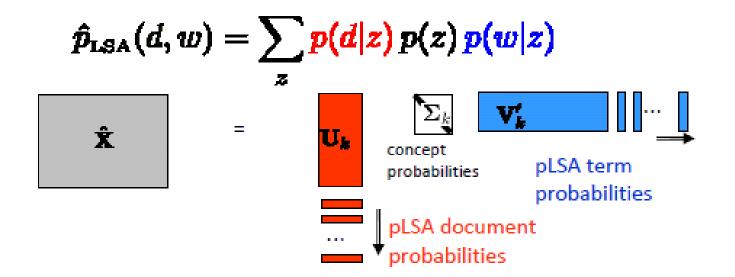
the r factors)	"segment 1"	"segment 2"	"matrix 1"	"matrix 2"	"line 1"	"line 2"	"power 1"	power 2"	
10 most probable words in th respective latent classes (or i	imag SEGMENT texture color tissue brain slice cluster mri volume	speaker speech recogni signal train hmm source speakerind. SEGMENT sound	robust MATRIX eigenvalu uncertainti plane linear condition perturb root suffici	manufactur cell part MATRIX cellular famili design machinepart format group	constraint LINE match locat imag geometr impos segment fundament recogn	alpha redshift LINE galaxi quasar absorp high ssup densiti veloc	POWER spectrum omega mpc hsup larg redshift galaxi standard model	load memori vlsi POWER systolic input complex arrai present implement	
	×	/	<	/	<	/	\checkmark	/	
	Most relevant latent classes for word "segment"				Most relevant lat classes for word		Most relevant latent classes for word "power"		

Model based on : 1568 documents on Clustering, Z=128

Performance comparison of a retrieval system: Three models, four document collection.



PLSA Mixture Decomposition vs. LSA/SVD



PLSA vs. LSA

- Objective function: Frobenius norm vs. likelihood
- Non-negative
- Normalized
- There is no obvious interpretation of the directions in the LSA latent space; Multinomial word distribution in PLSA
- PLSA utilized statistical theory to determine the number of latent space dimension. LSA based on ad hoc heuristics

Relation between PLSA and NMP

- Any (local) maximum likelihood solution of PLSA is a solution of NMF with KL divergence
- KL divergence is a measure of the difference between the empirical distribution and the model
- Implications
 - Any problem which can be formulated with NMF, may be efficiently solved by PLSA

SVD in Collaborative Filtering

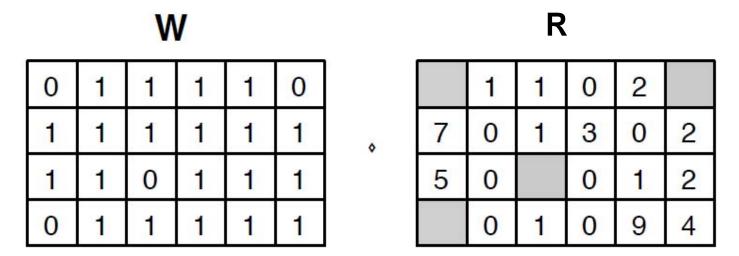
Filling in missing values

- Filling matrix using average value
- EM algorithms

$$R = \begin{pmatrix} r_{11} & \cdots & r_{1M} \\ \vdots & \ddots & \vdots \\ r_{N1} & \cdots & r_{NM} \end{pmatrix} \approx \begin{pmatrix} w_{11} & \cdots & w_{1k} \\ \vdots & \ddots & \vdots \\ w_{N1} & \cdots & w_{Nk} \end{pmatrix} \begin{pmatrix} v_{11} & \cdots & v_{1M} \\ \vdots & \ddots & \vdots \\ v_{k1} & \cdots & v_{NM} \end{pmatrix}$$

Weighted -SVD

- Constant non-negative matrix $W \in \mathbb{R}^{n \times m}_+$.
- Weights the importance of each entry of the data matrix R



- Useful for masking missing entries of the matrix.
- Allows factorization to focus on certain pieces of the matrix.

NMF in Collaborative Filtering

• Objective:
$$Err(P,Q) = \sum_{(u,i)\in\kappa} (r_{ui} - p_u^T q_i)^2$$

Only deal with known values in R

Can deal with large dataset

References

PLSA:

- T. Hofmann, Probabilistic Latent Semantic Analysis, Uncertainty in AI,1999
- T. Hofmann, Unsupervised Learning by Probabilistic Latent Semantic Analysis, Machine Learning Journal, 2000

EM for PCA/SVD:

- S. Roweis, EM Algorithm for PCA and SPCA, 1997
- S. Zhang, Using Singular Value Decomposition Approximation for Collaborative Filtering, CEC05, 2005

References(2)

NMF:

- I. Dhillon, Generalized Nonnegative Matrix Approximations with Bregman Divergences, NIPS2005
- D. Lee, Algorithms for Non-negative Matrix Factorization

PLSA vs NMF:

- E. Gaussier, Relation between PLSA and NMF and Implications, SIGIR'05
- C. Ding, On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing, 2008

References(3)

Advanced topics:

- A. Singh, Relational Learning via Collective Matrix Factorization, KDD'08
- R. Bell, Modeling Relationships at Multiple Scales to Improve Accuracy of Large Recommender Systems, KDD07
- Y. Koren, Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model, KDD08
- C. Lippert, Relation Prediction in Multi-Relational Domains using Matrix Factorization, NIPS08